extension | φ:Q→Aut N | d | ρ | Label | ID |
C23.1(C4×S3) = C8×S4 | φ: C4×S3/C4 → S3 ⊆ Aut C23 | 24 | 3 | C2^3.1(C4xS3) | 192,958 |
C23.2(C4×S3) = C8⋊S4 | φ: C4×S3/C4 → S3 ⊆ Aut C23 | 24 | 6 | C2^3.2(C4xS3) | 192,959 |
C23.3(C4×S3) = C4×A4⋊C4 | φ: C4×S3/C4 → S3 ⊆ Aut C23 | 48 | | C2^3.3(C4xS3) | 192,969 |
C23.4(C4×S3) = C24.3D6 | φ: C4×S3/C4 → S3 ⊆ Aut C23 | 48 | | C2^3.4(C4xS3) | 192,970 |
C23.5(C4×S3) = C24.5D6 | φ: C4×S3/C4 → S3 ⊆ Aut C23 | 24 | | C2^3.5(C4xS3) | 192,972 |
C23.6(C4×S3) = C3⋊C2≀C4 | φ: C4×S3/S3 → C4 ⊆ Aut C23 | 24 | 8+ | C2^3.6(C4xS3) | 192,30 |
C23.7(C4×S3) = (C2×D4).D6 | φ: C4×S3/S3 → C4 ⊆ Aut C23 | 48 | 8- | C2^3.7(C4xS3) | 192,31 |
C23.8(C4×S3) = C23.3D12 | φ: C4×S3/S3 → C4 ⊆ Aut C23 | 24 | 8+ | C2^3.8(C4xS3) | 192,34 |
C23.9(C4×S3) = C23.4D12 | φ: C4×S3/S3 → C4 ⊆ Aut C23 | 48 | 8- | C2^3.9(C4xS3) | 192,35 |
C23.10(C4×S3) = C23⋊C4⋊5S3 | φ: C4×S3/S3 → C4 ⊆ Aut C23 | 48 | 8- | C2^3.10(C4xS3) | 192,299 |
C23.11(C4×S3) = S3×C4.D4 | φ: C4×S3/S3 → C4 ⊆ Aut C23 | 24 | 8+ | C2^3.11(C4xS3) | 192,303 |
C23.12(C4×S3) = M4(2).19D6 | φ: C4×S3/S3 → C4 ⊆ Aut C23 | 48 | 8- | C2^3.12(C4xS3) | 192,304 |
C23.13(C4×S3) = C24.12D6 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 48 | | C2^3.13(C4xS3) | 192,85 |
C23.14(C4×S3) = (C2×C24)⋊C4 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.14(C4xS3) | 192,115 |
C23.15(C4×S3) = M4(2)⋊4Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.15(C4xS3) | 192,118 |
C23.16(C4×S3) = C24⋊C4⋊C2 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.16(C4xS3) | 192,279 |
C23.17(C4×S3) = D6⋊C8⋊C2 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.17(C4xS3) | 192,286 |
C23.18(C4×S3) = D6⋊2M4(2) | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.18(C4xS3) | 192,287 |
C23.19(C4×S3) = Dic3⋊M4(2) | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.19(C4xS3) | 192,288 |
C23.20(C4×S3) = C24.14D6 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.20(C4xS3) | 192,503 |
C23.21(C4×S3) = C24.15D6 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.21(C4xS3) | 192,504 |
C23.22(C4×S3) = C2×C23.6D6 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 48 | | C2^3.22(C4xS3) | 192,513 |
C23.23(C4×S3) = C24.24D6 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.23(C4xS3) | 192,516 |
C23.24(C4×S3) = C24⋊D4 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.24(C4xS3) | 192,686 |
C23.25(C4×S3) = C24⋊21D4 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.25(C4xS3) | 192,687 |
C23.26(C4×S3) = M4(2).31D6 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.26(C4xS3) | 192,691 |
C23.27(C4×S3) = M4(2)⋊26D6 | φ: C4×S3/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.27(C4xS3) | 192,1304 |
C23.28(C4×S3) = C3⋊D4⋊C8 | φ: C4×S3/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.28(C4xS3) | 192,284 |
C23.29(C4×S3) = C3⋊C8⋊26D4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.29(C4xS3) | 192,289 |
C23.30(C4×S3) = C24.57D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.30(C4xS3) | 192,505 |
C23.31(C4×S3) = C24.60D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.31(C4xS3) | 192,517 |
C23.32(C4×S3) = C12.88(C2×Q8) | φ: C4×S3/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.32(C4xS3) | 192,678 |
C23.33(C4×S3) = C12.7C42 | φ: C4×S3/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.33(C4xS3) | 192,681 |
C23.34(C4×S3) = D6⋊C8⋊40C2 | φ: C4×S3/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.34(C4xS3) | 192,688 |
C23.35(C4×S3) = C2×D12.C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.35(C4xS3) | 192,1303 |
C23.36(C4×S3) = C12.12C42 | φ: C4×S3/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.36(C4xS3) | 192,660 |
C23.37(C4×S3) = Dic3⋊C8⋊C2 | φ: C4×S3/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.37(C4xS3) | 192,661 |
C23.38(C4×S3) = C8×C3⋊D4 | φ: C4×S3/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.38(C4xS3) | 192,668 |
C23.39(C4×S3) = (C22×C8)⋊7S3 | φ: C4×S3/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.39(C4xS3) | 192,669 |
C23.40(C4×S3) = C24⋊33D4 | φ: C4×S3/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.40(C4xS3) | 192,670 |
C23.41(C4×S3) = C4×C6.D4 | φ: C4×S3/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.41(C4xS3) | 192,768 |
C23.42(C4×S3) = C24.73D6 | φ: C4×S3/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.42(C4xS3) | 192,769 |
C23.43(C4×S3) = C24.76D6 | φ: C4×S3/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.43(C4xS3) | 192,772 |
C23.44(C4×S3) = C2×C8○D12 | φ: C4×S3/C12 → C2 ⊆ Aut C23 | 96 | | C2^3.44(C4xS3) | 192,1297 |
C23.45(C4×S3) = (C22×S3)⋊C8 | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.45(C4xS3) | 192,27 |
C23.46(C4×S3) = (C2×Dic3)⋊C8 | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.46(C4xS3) | 192,28 |
C23.47(C4×S3) = C24.13D6 | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.47(C4xS3) | 192,86 |
C23.48(C4×S3) = M4(2)⋊Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.48(C4xS3) | 192,113 |
C23.49(C4×S3) = Dic3.5M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.49(C4xS3) | 192,277 |
C23.50(C4×S3) = Dic3.M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.50(C4xS3) | 192,278 |
C23.51(C4×S3) = S3×C22⋊C8 | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.51(C4xS3) | 192,283 |
C23.52(C4×S3) = D6⋊M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.52(C4xS3) | 192,285 |
C23.53(C4×S3) = Dic3×C22⋊C4 | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.53(C4xS3) | 192,500 |
C23.54(C4×S3) = C24.55D6 | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.54(C4xS3) | 192,501 |
C23.55(C4×S3) = C24.56D6 | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.55(C4xS3) | 192,502 |
C23.56(C4×S3) = C24.59D6 | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.56(C4xS3) | 192,514 |
C23.57(C4×S3) = Dic3×M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.57(C4xS3) | 192,676 |
C23.58(C4×S3) = Dic3⋊4M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.58(C4xS3) | 192,677 |
C23.59(C4×S3) = D6⋊6M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.59(C4xS3) | 192,685 |
C23.60(C4×S3) = C2×C12.46D4 | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.60(C4xS3) | 192,689 |
C23.61(C4×S3) = C2×C12.47D4 | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.61(C4xS3) | 192,695 |
C23.62(C4×S3) = C2×C23.16D6 | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.62(C4xS3) | 192,1039 |
C23.63(C4×S3) = C2×S3×M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.63(C4xS3) | 192,1302 |
C23.64(C4×S3) = (C2×C24)⋊5C4 | central extension (φ=1) | 192 | | C2^3.64(C4xS3) | 192,109 |
C23.65(C4×S3) = Dic3×C2×C8 | central extension (φ=1) | 192 | | C2^3.65(C4xS3) | 192,657 |
C23.66(C4×S3) = C2×Dic3⋊C8 | central extension (φ=1) | 192 | | C2^3.66(C4xS3) | 192,658 |
C23.67(C4×S3) = C2×C24⋊C4 | central extension (φ=1) | 192 | | C2^3.67(C4xS3) | 192,659 |
C23.68(C4×S3) = C2×D6⋊C8 | central extension (φ=1) | 96 | | C2^3.68(C4xS3) | 192,667 |
C23.69(C4×S3) = C2×C6.C42 | central extension (φ=1) | 192 | | C2^3.69(C4xS3) | 192,767 |
C23.70(C4×S3) = S3×C22×C8 | central extension (φ=1) | 96 | | C2^3.70(C4xS3) | 192,1295 |
C23.71(C4×S3) = C22×C8⋊S3 | central extension (φ=1) | 96 | | C2^3.71(C4xS3) | 192,1296 |
C23.72(C4×S3) = Dic3×C22×C4 | central extension (φ=1) | 192 | | C2^3.72(C4xS3) | 192,1341 |
C23.73(C4×S3) = C22×Dic3⋊C4 | central extension (φ=1) | 192 | | C2^3.73(C4xS3) | 192,1342 |
C23.74(C4×S3) = C22×D6⋊C4 | central extension (φ=1) | 96 | | C2^3.74(C4xS3) | 192,1346 |